Convex Calibration Dimension for Multiclass Loss Matrices

نویسندگان

  • Harish G. Ramaswamy
  • Shivani Agarwal
چکیده

We study consistency properties of surrogate loss functions for general multiclass learning problems, defined by a general multiclass loss matrix. We extend the notion of classification calibration, which has been studied for binary and multiclass 0-1 classification problems (and for certain other specific learning problems), to the general multiclass setting, and derive necessary and sufficient conditions for a surrogate loss to be calibrated with respect to a loss matrix in this setting. We then introduce the notion of convex calibration dimension of a multiclass loss matrix, which measures the smallest ‘size’ of a prediction space in which it is possible to design a convex surrogate that is calibrated with respect to the loss matrix. We derive both upper and lower bounds on this quantity, and use these results to analyze various loss matrices. In particular, we apply our framework to study various subset ranking losses, and use the convex calibration dimension as a tool to show both the existence and non-existence of various types of convex calibrated surrogates for these losses. Our results strengthen recent results of Duchi et al. (2010) and Calauzènes et al. (2012) on the non-existence of certain types of convex calibrated surrogates in subset ranking. We anticipate the convex calibration dimension may prove to be a useful tool in the study and design of surrogate losses for general multiclass learning problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification Calibration Dimension for General Multiclass Losses

We study consistency properties of surrogate loss functions for general multiclass classification problems, defined by a general loss matrix. We extend the notion of classification calibration, which has been studied for binary and multiclass 0-1 classification problems (and for certain other specific learning problems), to the general multiclass setting, and derive necessary and sufficient con...

متن کامل

Convex Calibrated Surrogates for Low-Rank Loss Matrices with Applications to Subset Ranking Losses

The design of convex, calibrated surrogate losses, whose minimization entails consistency with respect to a desired target loss, is an important concept to have emerged in the theory of machine learning in recent years. We give an explicit construction of a convex least-squares type surrogate loss that can be designed to be calibrated for any multiclass learning problem for which the target los...

متن کامل

Composite Multiclass Losses

We consider loss functions for multiclass prediction problems. We show when a multiclass loss can be expressed as a “proper composite loss”, which is the composition of a proper loss and a link function. We extend existing results for binary losses to multiclass losses. We subsume results on “classification calibration” by relating it to properness. We determine the stationarity condition, Breg...

متن کامل

Multiclass Classification Calibration Functions

In this paper we refine the process of computing calibration functions for a number of multiclass classification surrogate losses. Calibration functions are a powerful tool for easily converting bounds for the surrogate risk (which can be computed through well-known methods) into bounds for the true risk, the probability of making a mistake. They are particularly suitable in non-parametric sett...

متن کامل

Generalized Eigenvectors for Large Multiclass Problems

Generalized eigenvectors (GEVs) between the class-conditional second moment matrices have recently been shown to be a scalable and powerful technique for feature learning, demonstrating state-of-the-art performance on a variety of domains. However, the number of such features naturally scales with the square of the number of classes k, causing both statistical and computational inefficiencies w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016